Neutrinos: The key to unearthing the origin of the universe?

Blog
Publication Date
30/10/2023
Knowledge in sound, audio wave, overlapping circles gradually increasing in size and decreasing in opacity against a blue/purple background
Knowledge in sound
Neutrinos: The key to unearthing the origin of the universe?
Loading
/

Physicists have hypothesised that neutrinos – one of the most abundant fundamental particles in the universe – could be the origin of all matter in the universe today. However, despite their abundance, neutrinos are some of the most elusive particles to detect and, after decades of research, physicists still have many questions about their make-up, properties, and role in the universe’s origin.

Dr John Nugent
Dr John Nugent, University of Glasgow | RSE SAPHIRE awardee

At the University of Glasgow, research by members of the particle physics group uses data from the most sensitive neutrino detector on Earth, the Tokai to Kamioka (T2K) experiment in Japan. The main goal of the experiment is addressing one of the greatest outstanding problems of modern physics, namely that our current models of the composition of the universe have a fundamental gap. Modern physics observes particles (such as electrons) and antiparticles (like positrons) which form a symmetric pair where each has an identical mass but opposite charge. However, we now know that for every antiparticle there are in fact approximately ten billion particles, meaning the universe has a perfect symmetry with each particle balanced by an antiparticle with identical mass but opposite charge, and an almost perfect asymmetry, due to there being many, many more particles than antiparticles in the universe. This naturally leads to the question: where does this asymmetry stem from?

Inside the Super-Kamiokande, the far detector of T2K. Image credit: Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo

One way to investigate this phenomenon is through studying neutrinos. These fundamental neutral particles can be created in a state of quantum superposition – for example, the ability to be in multiple states at the same time – wherein they change their state in what is known as ‘neutrino oscillation’. By counting how often this change occurs, it may illuminate the underlying mechanism giving rise to the observed particle/antiparticle asymmetry.

Using advanced data analysis techniques, we can interrogate the measurements from the T2K experiment to investigate neutrinos’ properties. By simulating the high-intensity proton beam which produces the neutrinos, the group from Glasgow is able to study the fundamental physics of the resulting interactions. This work provides one of the world’s most precise measurements of neutrino properties, and this research can help us begin to understand their role in the evolution of the cosmos.

Following a pause during which time significant upgrades were made to the particle accelerator, the experiment will be switched back on in early 2023. A new, larger data set will be collected throughout next year which, together with our refined data analysis techniques, could mean we are at last on the cusp of understanding fundamental neutrino properties.

The continued partnership between Scottish and Japanese colleagues allows this critical research to take place, and, given that it positions Scotland at the forefront of major developments in fundamental physics, underlines the importance of this research.


Dr John Nugent, member of the Japan Society for the Promotion of Science; Royal Society Fellow at Tohoku University; Honorary Research Fellow in the School of Physics and Astronomy, the University of Glasgow.

Dr John Nugent received a £10,000 RSE Scotland Asia Partnerships Higher Education Research (SAPHIRE) Fund to exploit data from the most sensitive neutrino detector on earth, the Tokai to Kamioka experiment in Japan. The award also enabled Dr Nugent to recruit and train two researchers in advanced data analysis techniques to interrogate the findings from the experiment.

The RSE’s blog series offers personal views on a variety of issues. These views are not those of the RSE and are intended to offer different perspectives on a range of current issues.